加入收藏 | 设为首页 | 会员中心 | 我要投稿 阿坝站长网 (https://www.0837zz.com/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 站长资讯 > 外闻 > 正文

无线电测控、人脸识别、无人机巡考

发布时间:2021-02-20 12:19:35 所属栏目:外闻 来源:互联网
导读:而 前景 ,就是前方行驶的车辆。 对于车辆,嬴彻采用了经典几何方法来进行处理。 具体而言,是对车辆直接进行检测,通过将车辆进行部件级拆解,将其与三维模型做精准拟合。通过拟合出来的三维模型, 结合背景的深度图片,就可以得到车辆的位姿信息,包括距离

前景,就是前方行驶的车辆。

对于车辆,嬴彻采用了经典几何方法来进行处理。

具体而言,是对车辆直接进行检测,通过将车辆进行部件级拆解,将其与三维模型做精准拟合。通过拟合出来的三维模型, 结合背景的深度图片,就可以得到车辆的位姿信息,包括距离,朝向等,实现了超长距离的三维感知。

这一套方案,被称为“场景深度感知 + 前景车辆部件级解析”。用更通俗的话说,就是深度学习方法和基于几何的经典计算机视觉方法的有机结合。

这样一来,无论是对近景还是远景,系统对于整个环境都能有很好的感知。

另外,在相对恶劣的天气条件下,比如雨天、雾天,激光雷达、摄像头这些基于光学信号的传感器,都会受到影响。

为此,嬴彻也基于计算摄影学(computational photography)技术,开发了应对的去雨去雾算法,保障感知距离和感知精度。

 

这一方案的缺点在于,对于超长距而言,双目测距的误差随距离的平方增长。举个例子,如果在 100 米时,测距误差是 1 米,那么当距离达到 1000 米,误差就会达到 100 米。

其二,直接通过回归或者一些简单几何的方法来计算前方物体的深度信息。

这种方法产生的误差在15%-20%左右。不仅如此,在超长距上,标注数据不足,很难对移动物体的细节进行处理。

针对这些问题,嬴彻的解决方案——把前景和背景分开来做处理

背景,是指前方的整个静态环境。嬴彻的超长距精准3D感知技术,结合激光雷达,把激光点云作为控制点,然后由近及远,通过图像的方法计算深度。

杨睿刚博士解释说:

你可以想象在一张图像上,有些点带有深度信息,但更多的点没有。

通过无监督深度学习,我们把这些带有深度信息的点,从近到远地扩展出去,就可以得到很好的长距离背景深度图像。


 

这样的情况下,要保证行车安全,感知距离起码要达到 300 米以上。

车辆“看”得越远、测得越准,就越能精确地判断前车动向,做出合理的预判,保障行车安全。

这就是嬴彻科技最新发布的超长距精准3D感知技术要解决的问题。

不仅感知距离可以达到 1000 米,嬴彻还在行业内首次提到了测距精度——

1000米感知距离下,测距误差能达到5%以下。

兼顾超长距和精准的识别效果,并且不需要额外的传感器,嬴彻的技术团队是如何做到?

其中诀窍,嬴彻CTO杨睿刚博士同量子位进行了分享。

超长距精准3D感知技术

无论是激光雷达还是毫米波雷达,有效感知距离也不过 150-200 米。

在长距离的感知上,主要需要依靠相机作为传感器。

杨睿刚博士介绍,目前主要的技术有两种:

其一,双目立体视觉测距。即通过两个摄像头来观测同一物体,通过三角化来得到三维距离。


 

(编辑:阿坝站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    热点阅读