无线电测控、人脸识别、无人机巡考
而前景,就是前方行驶的车辆。 对于车辆,嬴彻采用了经典几何方法来进行处理。 具体而言,是对车辆直接进行检测,通过将车辆进行部件级拆解,将其与三维模型做精准拟合。通过拟合出来的三维模型, 结合背景的深度图片,就可以得到车辆的位姿信息,包括距离,朝向等,实现了超长距离的三维感知。 这一套方案,被称为“场景深度感知 + 前景车辆部件级解析”。用更通俗的话说,就是深度学习方法和基于几何的经典计算机视觉方法的有机结合。 这样一来,无论是对近景还是远景,系统对于整个环境都能有很好的感知。 另外,在相对恶劣的天气条件下,比如雨天、雾天,激光雷达、摄像头这些基于光学信号的传感器,都会受到影响。
为此,嬴彻也基于计算摄影学(computational photography)技术,开发了应对的去雨去雾算法,保障感知距离和感知精度。 这一方案的缺点在于,对于超长距而言,双目测距的误差随距离的平方增长。举个例子,如果在 100 米时,测距误差是 1 米,那么当距离达到 1000 米,误差就会达到 100 米。 其二,直接通过回归或者一些简单几何的方法来计算前方物体的深度信息。 这种方法产生的误差在15%-20%左右。不仅如此,在超长距上,标注数据不足,很难对移动物体的细节进行处理。 针对这些问题,嬴彻的解决方案——把前景和背景分开来做处理。 背景,是指前方的整个静态环境。嬴彻的超长距精准3D感知技术,结合激光雷达,把激光点云作为控制点,然后由近及远,通过图像的方法计算深度。 杨睿刚博士解释说:
(编辑:阿坝站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |