实现超高并发的无锁缓存?
假设滴滴有100w司机同时在线,每个司机没5秒更新一次经纬度状态,那么每秒就有20w次写并发操作。假设滴滴日订单1000w个,平均每秒大概也有300个下单,对应到查询并发量,可能是1000级别的并发读操作。 上述实现方案没有任何问题,但在并发量很大的时候(每秒20w写,1k读),锁m_lock会成为潜在瓶颈,在这类高并发环境下写多读少的业务仓井,如何来进行优化,是本文将要讨论的问题。 二、水平切分+锁粒度优化
上文中之所以锁冲突严重,是因为所有司机都公用一把锁,锁的粒度太粗(可以认为是一个数据库的“库级别锁”),是否可能进行水平拆分(类似于数据库里的分库),把一个库锁变成多个库锁,来提高并发,降低锁冲突呢?显然是可以的,把1个Map水平切分成多个Map即可: 每个Map的并发量(变成了1/N)和数据量都降低(变成了1/N)了,所以理论上,锁冲突会成平方指数降低。 分库之后,仍然是库锁,有没有办法变成数据库层面所谓的“行级锁”呢,难道要把x条记录变成x个Map吗,这显然是不现实的。 三、MAP变Array+最细锁粒度优化
假设driver_id是递增生成的,并且缓存的内存比较大,是可以把Map优化成Array,而不是拆分成N个Map,是有可能把锁的粒度细化到最细的(每个记录一个锁)。 (编辑:阿坝站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |