加入收藏 | 设为首页 | 会员中心 | 我要投稿 阿坝站长网 (https://www.0837zz.com/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 站长资讯 > 传媒 > 正文

让 Bash 命令历史更加有用

发布时间:2021-02-20 12:48:34 所属栏目:传媒 来源:互联网
导读:在本文中,我列出来的几个步骤,可以帮助大家完成机器学习项目,并检查每个任务是否已成功执行。 正如阿图尔加万德在他的书《清单宣言》中所说, 我们所知东西的数量和复杂性已经超过了我们个人正确、安全或可靠地提供其收益的能力。 下面这份简洁明了的项目

在本文中,我列出来的几个步骤,可以帮助大家完成机器学习项目,并检查每个任务是否已成功执行。

正如阿图尔·加万德在他的书《清单宣言》中所说,

我们所知东西的数量和复杂性已经超过了我们个人正确、安全或可靠地提供其收益的能力。

下面这份简洁明了的项目行动任务清单将减少你的工作量,提高你的产出。

每个ML项目中,我们都要执行8-10个步骤。其中有一些步骤可以按顺序交替执行。

1、从高层次的角度定义问题

这是为了理解和阐明问题的业务逻辑。它应该告诉你:

  • 问题的性质(有监督/无监督、分类/回归)
  • 可开发的解决方案类型
  • 应该使用什么指标来衡量绩效?
  • 机器学习是解决这个问题的正确方法吗?
  • 手动解决问题的方法
  • 问题的内在假设

2、识别数据源并获取数据

在这一步中,我们可以先用这个步骤来定义问题。

根据问题的定义,我们需要确定数据的来源,可以是数据库、数据存储库、审查程序等。对于要在生产中部署的应用程序,应通过开发数据管道来自动执行此步骤,以保持传入数据流入系统。

  • 列出所需数据的来源和数量。
  • 检查空间是否会成为一个问题。
  • 检查你是否有权将数据用于个人目的。
  • 获取数据并将其转换为可操作的格式。
  • 检查数据类型(文本、分类、数字、时间序列、图像)
  • 取一个样品做最后的测试。


于创建机器学习项目,大部分人的印象都是数据、建模、测试等,但是具体的事项,以及要经过哪些步骤,估计99%的人都不知道,今天的内容就跟大家说说机器学习项目里,一定要做的几件事。

为了让我们的工作能够更顺利地进行下去,工作计划、工作进程、任务清单等都是我们的辅助工具,如果没有这些,我们的工作将难以推进。机器学习也是如此,任何一个机器学习项目,都离不开任务清单,让每个人都知道该做什么事,什么时候完成,我们需要处理项目中的许多事情(例如准备工作、可能出现的问题、模型创建、模型微调等等)。




(编辑:阿坝站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    热点阅读