加入收藏 | 设为首页 | 会员中心 | 我要投稿 阿坝站长网 (https://www.0837zz.com/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 大数据 > 正文

你知道怎么选可视化工具吗?深度了解5大Python数据可视化工具

发布时间:2021-06-04 19:50:20 所属栏目:大数据 来源:互联网
导读:相信很多读者都听过 Matplotlib 、 Pyecharts 、 Seaborn 、 Plotly 、 Bokeh 这五大工具,学习Python就是希望做出各种酷炫的可视化图表,本文就将通过真实绘图来深度评测这五个Python数据可视化的库, 看看到底这几种工具各有什么优缺点,在制作图表时该如
相信很多读者都听过 Matplotlib 、 Pyecharts 、 Seaborn 、 Plotly 、 Bokeh 这五大工具,学习Python就是希望做出各种酷炫的可视化图表,本文就将通过真实绘图来深度评测这五个Python数据可视化的库, 看看到底这几种工具各有什么优缺点,在制作图表时该如何选择。
你知道怎么选可视化工具吗?深度评测5大Python数据可视化工具
指标说明
为了更清晰的了解这几款用于可视化的Python在作图时的异同,本文将使用 同一组数据 分别制作多系列条形图来对比,主要将通过以下几个指标来进行评测:
你知道怎么选可视化工具吗?深度评测5大Python数据可视化工具
数据说明
本文使用的数据为Pyecharts中的faker数据
from pyecharts.faker import Faker 
x = Faker.choose() 
y1 = Faker.values() 
y2 = Faker.values() 
你知道怎么选可视化工具吗?深度评测5大Python数据可视化工具
x为一列品牌名称,y1/y2为一列相同长度的 无意义 数据,接下来让我们使用不同的库对这组数据进行可视化!
Pyecharts
Echarts 是一个由百度开源的数据可视化,凭借着良好的交互性,精巧的图表设计,得到了众多开发者的认可。而Python是一门富有表达力的语言,很适合用于数据处理。当数据分析遇上数据可视化时, pyecharts 诞生了,支持 30+ 种图表 。 在pyecharts中制作条形图首先需要导入相关库
from pyecharts import options as opts 
from pyecharts.charts import Bar 
接着是绘图并不做任何任何调整,首先创建一个Bar实例,接着添加x轴y轴数据,注意 仅接收list格式 数据,最后添加标题并设置在notebook中直接展示。总体来说还是比较符合正常的作图逻辑,整体 代码量并不多 。
c = ( 
    Bar() 
    .add_xaxis(x) 
    .add_yaxis("商家A", y1) 
    .add_yaxis("商家B", y2) 
    .set_global_opts(title_opts=opts.TitleOpts(title="Pyecharts—柱状图", subtitle="")) 
).render_notebook() 
默认生成的两系列柱状图如下:
你知道怎么选可视化工具吗?深度评测5大Python数据可视化工具
可以看到,该图 支持交互式 展示与点击,默认生成的样式也较为美观,并且Pyecharts有详细的中文文档与demo,网上关于Pyecharts的讨论也较多,如果是刚接触的读者也能比较快的上手。 当然如果对默认样式不满意的话,可以进行一些调整,由于 文档十分完整 ,所以代码修改起来并不困难,比如可以修改主题并设置一些标 记线、DataZoom,添加小组件等
你知道怎么选可视化工具吗?深度评测5大Python数据可视化工具
总体来说,由于Pyecharts是基于Echarts制作的,因此生成图表比较美观,并且 官方中文文档对相关设置讲解非常详细,有关Pyecharts的 讨论也非常多 ,所以如果在使用过程中有相关疑问也很容易通过检索找到答案,但遗憾的是不支持使用pandas中的series数据,需要 转换为list 才可以使用,不过整体还是让我很满意的一款可视化库。主观评分: 85 分
你知道怎么选可视化工具吗?深度评测5大Python数据可视化工具
Matplotlib
Matplotlib 应该是最广泛使用的Python可视化工具,支持的图形种类非常多,使用Matplotlib制作相同效果的图需要先导入相关库,并且并不支持原生中文所以还要设置下中文显示
import matplotlib.pyplot as plt 
import numpy as np 
plt.rcParams['font.sans-serif'] = ['SimHei']  
接着就是绘图,但是相比较于pyecharts大多是往写好的代码里面添加数据、配置不同,matplotlib大多数需要我们自己写代码,所以 代码量可能稍多一点

(编辑:阿坝站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    热点阅读